bagging
EvolutionaryBaggingClassifier(model=AUTOML_CLASSIFICATION_PIPELINE, param_grid=CLASSIFICATION_PARAM_GRID, population_size=10, sampling_size=1, metric=metrics.Accuracy, sampling_rate=1000, seed=42)
¶
Bases: EvolutionaryBaggingEstimator
, base.Classifier
Evolutionary Bagging Classifier follows the Oza Bagging approach to update the population of estimator pipelines.
PARAMETER | DESCRIPTION |
---|---|
model |
A river model or model pipeline that can be configured by the parameter grid.
DEFAULT:
|
param_grid |
A parameter grid, that represents the configuration space of the model.
DEFAULT:
|
population_size |
The population size estimates the size of the population as well as the size of the ensemble used for the prediction.
DEFAULT:
|
sampling_size |
The sampling size estimates how many models are mutated within one mutation step.
DEFAULT:
|
metric |
The river metric that should be optimised.
DEFAULT:
|
sampling_rate |
The sampling rate estimates the number of samples that are executed before a mutation step takes place.
DEFAULT:
|
seed |
Random number generator seed for reproducibility.
DEFAULT:
|
Examples:
>>> from river import datasets, ensemble, evaluate, metrics, compose, optim
>>> from river import preprocessing, neighbors, naive_bayes, tree
>>> from river import linear_model
>>> from EvOAutoML import classification, pipelinehelper
>>> dataset = datasets.Phishing()
>>> model = classification.EvolutionaryBaggingClassifier(seed=42)
>>> metric = metrics.F1()
>>> for x, y in dataset:
... y_pred = model.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model = model.learn_one(x,y) # make the model learn
predict_proba_one(x)
¶
Averages the predictions of each classifier.
EvolutionaryOldestBaggingClassifier(model=AUTOML_CLASSIFICATION_PIPELINE, param_grid=CLASSIFICATION_PARAM_GRID, population_size=10, sampling_size=1, metric=metrics.Accuracy, sampling_rate=1000, seed=42)
¶
Bases: EvolutionaryBaggingOldestEstimator
, base.Classifier
Evolutionary Oldest Bagging Classifier follows the Oza Bagging approach to update the population of estimator pipelines. It mutates the population by removing the oldest model configuration.
PARAMETER | DESCRIPTION |
---|---|
model |
A river model or model pipeline that can be configured by the parameter grid.
DEFAULT:
|
param_grid |
A parameter grid, that represents the configuration space of the model.
DEFAULT:
|
population_size |
The population size estimates the size of the population as well as the size of the ensemble used for the prediction.
DEFAULT:
|
sampling_size |
The sampling size estimates how many models are mutated within one mutation step.
DEFAULT:
|
metric |
The river metric that should be optimised.
DEFAULT:
|
sampling_rate |
The sampling rate estimates the number of samples that are executed before a mutation step takes place.
DEFAULT:
|
seed |
Random number generator seed for reproducibility.
DEFAULT:
|
Examples:
>>> from river import datasets, ensemble, evaluate, metrics, compose, optim
>>> from river import preprocessing, neighbors, naive_bayes, tree
>>> from river import linear_model
>>> from EvOAutoML import classification, pipelinehelper
>>> dataset = datasets.Phishing()
>>> model = classification.EvolutionaryOldestBaggingClassifier(seed=42)
>>> metric = metrics.F1()
>>> for x, y in dataset:
... y_pred = model.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model = model.learn_one(x,y) # make the model learn
predict_proba_one(x)
¶
Averages the predictions of each classifier.